

Generalized Formula of the Area of N-Point Star (Regular)

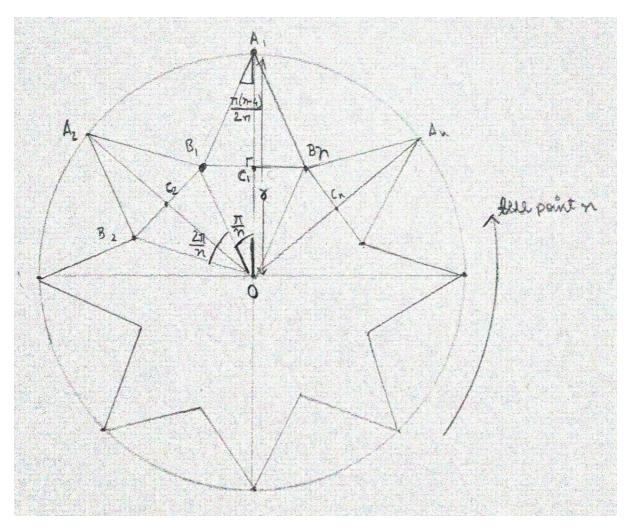
Shourya Kumar¹

¹Class X, J.V.M Shyamali, Ranchi, India.

Statement

The area of a regular n-point star is equal to

 $nr^2(\tan\frac{\pi(n-4)}{2n}\tan\frac{\pi}{n})/(\tan\frac{\pi(n-4)}{2n}+\tan\frac{\pi}{n})$ where n is the number of points of the star and r is the radius of the circle within which the star lines and whose all points are touching the circle.



Proof

Let,

We put a n-point star inside a circle with centre O and of radius r.

As it is a regular n-point star.

Let,All it's sides i.e A1B1=A2B1=A2B2==AnBn=A1Bn			
$\Delta A1OB1$ and $\Delta A1OBn$			
A1O = A1O (=r Given)			
A1B1=A1Bn (sides)			
OB1=OBn (given)			
So, $\Delta A1OB1 \cong \Delta A1OBn$ (By SSS congruencecriteria)			
Similarly it can be shown that,			
$\Delta A1OB1 \cong \Delta A2OB1 \cong \Delta A2OB2 \cong \dots \cong \Delta A1OBn$			
So,			
$\angle A1OB1 = \angle A2OB1 = \angle A2OB2 = \dots = \angle A1OBn$			
(ByCPCT)(1)			
And also $\angle B1A10 = \angle B1A20 = \angle B2A20 = \dots \angle BnA10$			
(By CPCT)(2)			
(By CPCT) (2) Now, Sum of all angles around the centre $O=2\pi$			
Now, Sum of all angles around the centre $O = 2\pi$			
Now, Sum of all angles around the centre $O = 2\pi$ Or $\angle A1OB1 + \angle A2OB1 + \angle A2OB2 + \dots + \angle A1OBn = 2\pi$			
Now, Sum of all angles around the centre $O = 2\pi$ Or $\angle A1OB1 + \angle A2OB1 + \angle A2OB2 + \dots + \angle A1OBn = 2\pi$ Or $2n^* \angle A1OB1 = 2\pi$ (From equation (1))			
Now, Sum of all angles around the centre $O = 2\pi$ $Or \angle A1OB1 + \angle A2OB1 + \angle A2OB2 + \dots + \angle A1OBn = 2\pi$ $Or 2n^* \angle A1OB1 = 2\pi$ (From equation (1)) $Or \angle A1OB1 = 2\pi/2n = \pi/n$			
Now, Sum of all angles around the centre $O = 2\pi$ $Or \angle A1OB1 + \angle A2OB1 + \angle A2OB2 + \dots + \angle A1OBn = 2\pi$ $Or 2n^* \angle A1OB1 = 2\pi$ (From equation (1)) $Or \angle A1OB1 = 2\pi/2n = \pi/n$ Sum of all angles at the points of the star = (n-4) π			
Now, Sum of all angles around the centre $O = 2\pi$ Or $\angle A1OB1 + \angle A2OB1 + \angle A2OB2 + \dots + \angle A1OBn = 2\pi$ Or $2n^* \angle A1OB1 = 2\pi$ (From equation (1)) Or $\angle A1OB1 = 2\pi/2n = \pi/n$ Sum of all angles at the points of the star = (n-4) π Or $\angle B1A1O + \angle B1A2O + \angle B2A2O \dots + \angle BnA1O = (n-4)\pi$			

B1A1=BnA1

Therefore, $\Delta B1A1Bn$ is an isosceles Δ and perpendicular from .A1 to base B1Bn bisects B1Bn.

So, B1C1=BNC1= x (Suppose)

And B1Bn=B1C1+BnC1=x+x=2x

Also, suppose A1C1=a			
And	C1O=b		
So in right angled $\Delta A1B1C1$,			
$\tan\frac{\pi(n-4)}{2n} = \mathbf{B}$	IC1/A1C1=x/a		
Or $a=x/tan \frac{\pi}{2}$	$\frac{n-4)}{2n}$	(3)	
And in right a	ngled $\triangle OB1C1$,		
$\tan \frac{\pi}{n} = B1C1/$	C1O=x/b		
Or b=x/ $\tan \frac{\pi}{n}$		(4)	
We know that	A1O=A1C1+C1O=a+b=r	(5)	
Putting value of a and b from equations (3) and (4)			
We get,			
a+b=r			
or x/tan $\frac{\pi(n-4)}{2n}$	$\frac{x}{n} + \frac{x}{n} = r$		

or x
$$(\tan \frac{\pi(n-4)}{2n} + \tan \frac{\pi}{n})/(\tan \frac{\pi(n-4)}{2n} \tan \frac{\pi}{n}) = r$$

or x=r $(\tan \frac{\pi(n-4)}{2n} \tan \frac{\pi}{n})/(\tan \frac{\pi(n-4)}{2n} + \tan \frac{\pi}{n})$ ------(6)

Area of the n-point star(Regular)

=Area of (Δ A1OB1+ Δ A2OB1+ Δ A2OB2+....+ Δ A1OBn)

=2n*Area of \triangle A1OB1 (As it has been shown that all these \triangle s are congruent or they have equal area)

=2n*1/2*A1O*B1C1

=n*(A1C1+C1O)*B1C1

 $=n^*(a+b)^*x$

=n*r*x (putting value of (a+b)=r from equation(5))

 $=n*r*r(\tan\frac{\pi(n-4)}{2n}\tan\frac{\pi}{n})/(\tan\frac{\pi(n-4)}{2n}+\tan\frac{\pi}{n})$ (Putting value of x from equation (6))

Therefore

Area of a regular n-point star

 $= nr^2(\tan\frac{\pi(n-4)}{2n}\tan\frac{\pi}{n})/(\tan\frac{\pi(n-4)}{2n} + \tan\frac{\pi}{n})$