
 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 16

An Optimized System for Data
Sharing in Corporate Networks

Dr. Y. Dasaratha Rami Reddy1, Mr. G. Sreenivasa Reddy2
1Associate Professor, BVSR Engineering College.
2Associate Professor, CBIT Engineering College.

Abstract

Most of the companies utilize the corporate networks for share the
information among the companies and providing the communication
between them based on common interest. It can help to reduce the
computational cost and ensures the profits. Despite of its advantages it
poses unique security risks, network ability and efficiency to such
information sharing system. To address these problems we present a novel
system called ComPeer, which provides the flexible information sharing
services in cloud environments based peer to peer technology. By
combining the database, peer to peer technology and cloud computing, this
system provides cost-efficient, resilient and scalable network platform for
corporate network applications and distribute data sharing services to
participants based on the accepted pay-as-go-model.

Keywords: P2P Technology, Cloud Computing, Data Sharing, Query
Processing.

Introduction

Companies of the same industry sector are often connected into a corporate network for
collaboration purposes. Each company maintains its own site and selectively shares a portion of
its business data with the others. From a technical perspective, the key for the success of a
corporate network is choosing the right data sharing platform, a system which enables the shared
data network-wide visible and supports efficient analytical queries over those data.

Existing System

Traditionally, data sharing is achieved by building a centralized data warehouse, which
periodically extracts data from the internal production systems (e.g., ERP) of each company for
subsequent querying. Unfortunately, such a warehousing solution has some deficiencies in real
deployment. In current system data sharing is enabled by constructing a centralized data
warehouse, which periodically extracts data from the internal production systems of each
company for subsequent querying. But this solution has many drawbacks in real deployment. To
ensure the usability of conventional P2P networks, database community have proposed a series

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 17

of Peer-to-Peer Database Management System (PDBMS) by combining the state-of-art database
techniques in the P2P systems. First, the corporate network needs to scale up to support
thousands of participants, while the installation of a large- scale centralized data warehouse
system entails nontrivial costs including huge hardware/software investments and high
maintenance cost. Second, companies want to fully customize the access control policy to
determine which business partners can see which part of their shared data. Finally, to maximize
the revenues, companies often dynamically adjust their business process and may change their
business partners.

Proposed System

To address the aforementioned problems, this paper presents ComPeer, a cloud enabled data
sharing platform designed for corporate network applications. By integrating cloud computing,
database, and peer-to-peer (P2P) technologies, this system achieves its query processing
efficiency and is a promising approach for corporate network applications. This system is also
quite different from the systems based on the MapReduce and Hadoop frameworks. This
ComPeer employs hybrid design to achieve the query processing Efficiency. This will also
extends role-based access controls and employs P2P technology to retrieve the data between
business patterns.

Figure 1.Overview of the System

Overview of Optimized System

In this section, we first describe the evolution of this optimized system platform from its early
stage as an unstructured P2P query processing system, and an elastic data sharing services in the
cloud. We then present the design and overall architecture of system as shown in Fg.1. While
traditional P2P network has not been designed for enterprise applications, the ultimate goal of
ComPeer is to bring the state-of-art database techniques into P2P systems. In particular,
ComPeer provides efficient distributed search services with a balanced tree structured overlay
network and partial indexing scheme for reducing the index size. A cloud enabled evolution of

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 18

ComPeer. Now in the last stage of its evolution, ComPeer is enhanced with distributed access
control, multiple types of indexes, and pay-as-you- go query processing for delivering elastic
data sharing services in the cloud. The software components of ComPeer are separated into
two parts: core and adapter. The core contains all the data sharing functionalities and is designed
to be platform independent. The adapter contains one abstract adapter which defines the elastic
infrastructure service interface and a set of concrete adapter components which implement such
an interface through APIs provided by specific cloud service providers.

The ComPeer core contains all platform-independent logic, including query processing and P2P
overlay. It runs on top of the Cloud adapter and consists of two software components: bootstrap
peer and normal peer. The bootstrap peer is run by the ComPeer service provider, and its main
functionality is to manage the ComPeer network. The normal peer software consists of five
components: schema mapping, data loader, data indexer, access control, and query executor.

Managing Peers Join or Depature

In addition to managing peer join and peer departure, the bootstrap peer spends most of its
running-time on monitoring the healthy of normal peers and scheduling fail- over and auto-
scaling events. Algorithm 1 shows how the daemon service of the bootstrap works.

Algorithm 1: Auto Fail Over and Auto Scaling BootStrapDaemon ()

Step 1: while true do
Step 2: identify the network status by calling invokeCloudWatch () function Status
S:= invokeCloudWatch()
Step 3: Declare ArrayList for peerList and newPeer
ArrayList PeerList:= BootStrap.getAllPeer ()
ArrayList newPeer:= new ArrayList ()
Step 4: for i:= 0 to peerList.size () then
Step 5: if peerList.get (i).fails () then
Peer peer:= new Peer ()
peer.loadMySQLBackUpFromRDS
(peerList.get(i))
newPeer.add(peer)
BootStrap.setBlackList(peerList.get(i))
Step 6: else
if peerList.get (i).overloaded() then
Peer peer := new Peer()
peer.upScale(peerList.get(i))
peer.clone(peerList.get(i).getDB())
BootStrap.setBlackList(peerList.get(i))
newPeer.add(peer)
Step 7: BootStrap.removeAllPeersInBlackList()

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 19

Step 8: BootStrap.addAllNewPeers (newPeer)
Step 9: BootStrap.broadcastNetworkStatus()
Step 10: sleep T seconds.

Adaptive Query Processing

ComPeer provides two services for the participants: the storage service and search service, both
of which are charged in a pay-as-you-go model. This section presents the pay-as- you-go query
processing module which offers an optimal performance within the user’s budget. ComPeer
employs two query processing approaches: basic processing and adaptive processing. The basic
query processing strategy is similar to the one adopted in the distributed databases domain.
Overall, the query submitted to a normal peer is evaluated in two steps: fetching and processing.
In the fetching step, the query is decomposed into a set of subqueries which are then sent to the
remote normal peers that host the data involved in the query. In the processing step, the normal
peer first collects all the required data from the other participating normal peers. To reduce I/O,
the peer P creates a set of MemTables to hold the data retrieved from other peers and bulk inserts
these data into the local MySQL when the MemTable is full. After receiving all the necessary
data, the peer finally evaluates the submitted query. One problem of the basic approach is the
inefficiency of query processing. The performance is bounded only one node is used. We can
easily address this problem by employing more nodes to process the query in parallel.

A. A P2P Parallel Processing Approach

The idea of parallel processing for each join, instead of forwarding all tuples into a single
processing node, we disseminate them into a set of nodes, which will process the join in parallel.
We adopt the conventional replicated join approach. Namely, the small table will be replicated to
all processing nodes and joined with a partition of the large table. When a query involves multiple
joins and group by, the query plan can be expressed as a processing graph.

Processing Graph: Given a Query, the processing Graph is generated as follows

 For each node we assign a level id to each node
 Root node represents the peer that accepts the query, which is responsible for collecting the

results for the user.
 Suppose query involves x joins and y “Group By” attributes, the mixmum level of the

Graph satisfies

.
 Except for the root node, allother nodes only process one join operator or the “Group By”

operator.
 Nodes of level accept inut data from the ComPeer storage system. After completing its

processing, nodes sends its data to the nodes in the above level.
 All of operators that are not evaluated in the non-root node are processed by the root.

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 20

In the replicated join, we trade off the network cost for the parallelism. The benefit may be
neutralized when a large number of tuples are re-partitioned in the P2P network. Therefore, we
propose a model to estimate the cost. This parallel processing in the cost model, that the I/O and
the CPU time dominate the overall cost.

Figure 2.MapReduce Processing

B. MapReduce for COMPEER

Besides its native processing strategy, we also implement a MapReduce-style engine for
ComPeer. To facilitate MapReduce processing, a Hadoop distributed file system (HDFS) is
mounted at system start time to serve as the temporal storage media for MapReduce jobs. The
main difference between MapReduce method and native P2P method comes from the join
processing. The Fig. 2, in MapReduce method, instead of doing replicate joins, the symmetric-
hash join approach is adopted. Each mapper reads in its local data and shuffles the intermediate
tuple according to the hash value of the join key. Therefore, each tuple only needs to be shuffled
once on each level. Note that the configuration and launch of a MapReduce job also incurs
certain overhead, which, can be measured in the runtime, is a constant value.

C. Adaptive Query Processing

Based on the above-named price models, we propose our adaptive query process approach.
When a query is submitted, the query planner retrieves connected histogram and index info from
the bootstrap node, analyzes the question and constructs a process graph for the query. Then the
cost of each the P2P engine and MapReduce engine area unit foretold supported the histograms
and runtime parameters of the value models. The query planner compares the prices between 2
strategies and executes the one with lower price. The careful algorithmic rule description is
shown in algorithm 2.

Adaptive Query Processing

Input: Query

Output: Query configuration on a specific query engine

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 21

Comparing between two cost models, we can observe that table size and query complexity are
the key factors that affect the query planner’s decision. With more levels of join, and larger size
of tables, the query planner tends to choose the MapReduce method, while on the contrary,
simple queries involving smaller data size and fewer joins are taken care of by the P2P method.

Conclusion

We have discussed the unique challenges posed by sharing and processing data in an inter-
businesses environment and proposed ComPeer, a system which delivers elastic data sharing
services, by integrating cloud computing, database, and peer-to-peer technologies. Our system
can efficiently handle typical workloads in a corporate network and can deliver near linear query
throughput as the number of normal peers grows. Therefore, ComPeer is a promising solution for
efficient data sharing within corporate networks.

References

1. Gang Chen, Tianlei Hu, Dawei Jiang, Peng Lu, Kian-Lee Tan, Hoang Tam Vo, and Sai Wu,
“BestPeer++: A Peer-to- Peer Based Large-Scale Data Processing Platform” Vol. 26,No. 6,
June 2014.

2. A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A. Rasin, and A. Silberschatz,
“HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 922-933, 2009.

3. C. Batini, M. Lenzerini, and S. Navathe, “A Comparative Analysis of Methodologies for

 International Journal on Wireless, Networking & Mobile Communication Innovations
Vol. 5, Issue 1 – 2021

 ISSN: 2581-5113

© Eureka Journals 2021. All Rights Reserved. Page 22

Database Schema Integration,” ACM Computing Surveys, vol. 18, no. 4, pp. 323-364, 1986.
4. D. Bermbach and S. Tai, “Eventual Consistency: How Soon is Eventual? An Evaluation of

Amazon s3’s Consistency Behavior,” in Proc. 6th Workshop Middleware Serv. Oriented
Comput. (MW4SOC ’11), pp. 1:1-1:6, NY, USA, 2011.

5. B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking Cloud
Serving Systems with YCSB,” Proc. First ACM Symp. Cloud Computing, pp. 143- 154,
2010.

