
        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 27 

Design of 16-bit Pipelined RISC Processor 

Ropali Singh, Vertika Mishra 

Abstract 

This paper presents the design of efficient and high throughput 16 bit 
pipelined RISC Processor. The design is carried out considering the 
pipeline problem, speed with external memory, coding density and clock 
frequency for cost effectiveness and higher performance processor 
design. Paper describes about the architecture, programming model, 
synthesis results and analysis of the design. The coding is carried out in 
Verilog HDL and functionality is verified through simulation and test 
benches at different stages including behavioral and gate level RTL code 
using Modelsim (Mentor Graphics). The synthesis part is done using 
Leonardo Spectrum of Mentor Graphics. The presented design has 
throughput ~167 MIPS at 500 MHz, which shows better performance at 
a particular frequency. 

Keywords: Processor, RISC, Pipelined and HDL.  

Introduction 

The increasing popularity of handheld items such as portable multimedia player, PDA and 
low power device application where processor is used, not the new concept for 21st century. 
The advancements of VLSI design technology together with demand of higher performance 
processor is the challenge to meet the balance between speed and power, pipeline the 
instruction as well as low power memories for popularity of processor application in daily 
life, it urges the needs for more development of RISC processor. The main goal of the work 
is to design the processor that is more cost effectiveness and performance driven than their 
predecessor[1]. 

Design Architecture 

The design of RISC architecture that reduces chip complexity by using simpler instruction as 
well as design based on the instruction set computer architecture. The strategy on simple 
architecture on the insight can be providing higher performance, and this simplicity enables 
much faster execution of each instruction. The designed architecture [2] is shown in Fig.1. 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 28 

 
Figure 1.Processor block diagram 

The processor design is to complete the instruction in four stages i.e. fetch, decodes, execute 
and store or write back. During the instruction fetch step the processor fetches instructions 
from the memory and computes the address of the next instruction by incrementing the 
program counter (PC). During the second step, the Instruction decodes and register fetch step 
and decode the instruction as on instruction decoder. The third step is the Execution, memory 
address computation or branch instruction functions in different ways depending on what 
type of instruction the processor is executing. The fourth step only takes place to store word 
for storing computation result or write back. The entire steps include the load and store word 
instructions to access the memory and arithmetic-logical instructions to compute results. 

Programming Methodology 

The whole design is broken in thirteen modules including top level module. All modules are 
tested single and debugged the number of times for getting the correct result, after completion 
these small modules then top module calls all modules and its interfaces. The top modules 
simulation result verified through analysis. The coding is different from traditional design. 
There is an effort to avoid wait statement because it captures the extra silicon area which is 
the major issue for small devices. There are total 28 instructions, the data or address is 16 bit 
length. When some blocks are not used in particular instruction then that blocks are in dead 
mode during the execution, power can be saved on using this technique. When these blocks 
are required then an enable signal is used from the control unit to activate it. The instruction 
format is shown in fig.2. The left remaining bits are not used. 

 
 
 
 
 
 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 29 

OPCODE[15:11] SRC1[8:6] SRC2[5:3] DST[2:0] 
Word 1 

ADDRESS OR DATA[15:0] 
Word 2 

OPCODE[15:11]  DST[2:0] 
Load of Data 

OPCODE[15:11] NextState[10:6]  
Jump to new state 

OPCODE 
[15:11] 

SRC1[8
:6] 

SRC2[5
:3] 

Cp_sel[2:
0] 

Compare between two data 
Figure 2.Instruction format 

SRC: Source registers address 

DST: Destination registers address 

Here the design is based on pipelined architecture to speed up the processorbut branches are 
significant problem in the pipeline[3].One way to overcome this problem is using the branch 
delay slot, but it is not the sufficient solution. Another way of eliminating pipeline stalls was 
to predict the direction of the branch using a table stored in the decode unit. If the prediction 
was wrong, the instructions that were in process had to be cancelled, resulting in wasted time 
and power. Here for reducing branch penalties is the conditional execution. The important 
thing is that to replace the test and branch sequences altogether.Using branches, this would 
require at least two branches to complete the instruction. Using conditional execution, say 

If (true) statement1; conditional instruction 

If (false) statement2; conditional instruction 

This is a sequence of three instructions with no branches. One of the two assignments 
executes, and the other acts as a nop (no operation). No branch prediction is needed, and the 
pipeline operates perfectly. 

The design is multi cycle methodology, this implementation has several key advantages over 
a single cycle implementation. First, it can share modules, allowing the use of fewer 
hardware components. Instead of multiple arithmetic logic units (ALU’s), the multi cycle 
implementation uses only one. Only one memory is used for the data and the instructions 
also. Breaking complex instructions into steps also allows to significantly increase the clock 
cycle because no longer have to base the clock on the instruction that takes the longest to 
execute. The functionality is verified through writhing test bench to ensure the fully logical 
correctness of the design. 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 30 

Simulation, synthesis and analysis the results 

The instruction count in microprocessor performance measurement is the number of 
instructions executed during the run of a program, here process or CPI (Cycles per 
Instruction) are evaluated at different frequencies for various instructions. The instructions 
are tested in number of times and the results of few instructions are given in Table.1 for 
operating at frequency500MHz (applied time period is 2 ns).  

Table 1.Verification result at 500 MHz 

In
st

ru
ct

io
n 

O
pc

od
e 

R
eg

1_
s 

R
eg

2_
s 

R
eg

_d
 

Ex
ec

ut
io

n 
tim

e 
in

 n
s 

C
om

pl
et

e 
cy

cl
e 

tim
en

s 

C
lo

ck
 c

yc
le

  

R
em

ar
ks

 

Instruction Type: Arithmetic and Logical Instruction 
ADD 1101 10 1.1E+14 1.1E+14 1 6 3 ADD 

reg_d,reg1_s,reg2_s 
INC 111 1.1E+13 - 1.1E+13 1 6 3 INCreg_d,reg1_s 
DEC 1000 1.1E+13 - 1.1E+13 1 6 3 DECreg_d,reg1_s 
XOR 1011 1E+12 1.1E+14 1.1E+14 1 6 3 XORreg_d,reg1_s,reg_s 
AND 1001 1E+14 1.1E+14 1E+14 1 6 3 AND 

reg_d,reg1_s,reg_s 
SUB 1110 1.1E+14 1.1E+14 100 1 6 3 SUB 

reg_d,reg1_s,reg_s 
NOT 1100 1.1E+14   1E+15 1 6 3 NOT reg_d,reg1_s 
OR 1010 1E+14 10 1E+14 1 6 3 OR reg_d,reg1_s 
Instruction type: shifting operations 
SHL 11010 1E+14 - 1E+15 1 6 3 SHL Regd_s,reg1_s 
SHR 11011 1.1E+15 - 1.1E+15 1 6 3 SHL Regd_s,reg1_s 
ROL 11100 1.1E+15 - 1E+15 1 6 3 SHL Regd_s,reg1_s 
ROR 11101 1E+14 - 1E+13 1 6 3 SHL Regd_s,reg1_s 
Instruction type: Move instruction 
    Before move After move   

  Reg1_s Reg_d Reg_d     
Move 11000 10 110 10 1 6 3 Move reg_d,reg1_s 

 
 Complete cycle time : the time for opcode changes 
 Reg1_s: operand 1 source register  
 Reg2_s: operand 2 source register  
 Reg_d : destination register  
 Opcode: unique operation code  
 CPI : Cycles Per Instruction 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 31 

Processor Time=InstCount*CPI /Clk frequency(1) 

Performance = Clk frequency/(Inst*CPI)(2) 

The throughput and performance of the processor at 500 MHz is estimated here. 

Throughput = 1 / (6 x 10-9) IPS 

= 0.1666x109 instruction/second 

 = 167 MIPS 

Processor Performance = 500x106/(167x106 x3) 

= 500/501 = 0.99800  

i.e. the performance of the processor is 99% , it may decrease after hardware realization. 

Here the design considered not to operate in higher frequency rather than the specified, 
because then it has the chance for over clocking problem [5]. So, lots of power can be lost as 
heat dissipation and overall device performance decreases for increasing processor time. The 
design can improve overall processor performance (i.e., reduce processor time) in a way that 
increases the instruction count, by using instructions in that inner loop that may do less work 
per instruction.From the Table.1, each instruction is finished in same time, this is the crucial 
factor for increasing the performance which is based on coding density and way of 
assignments the instruction in coding. Secondly such design is used to overcome the 
pipelining stall problem of modern processor. The capability of execution of instruction has 
167MIPS. The simulated waveform one part is shown in Fig.3. 

The Table.2 is the CPI with respect to different frequencies. The performance of the 
processor depends on the processor time as well as the frequency in some factor. The 
processor time and performance is measured from eqn.(1) and eqn.(2) [4]. 

 
Figure3.Simulated waveform 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 32 

Table 2.Comparison between frequency and speed 

 
CCT: Complete Cycles Time 

CPI: Cycles per Seconds 

The RTL code of the design is synthesized using FPGAXilinxVertexIIPro, device 2V40cs144 
with speed grade -6. The whole architecture is mapped to generate the RTL and gate level 
netlist as shown in fig.4a and fig.4b. 

 
Figure 4a.View of RTL schematic 

The Table.3 shows the critical path of different blocks of the processing unit, these are 
reported from resource file. This table also justifies the higher speed of the design .The 
critical path is low as compared to modern processor, so it has lower latency.After synthesis, 
the design was implemented using Xilinx ISE 9.1 (place and route). The device utilization is 
shown in Fig.5. 

Applied Time Clock Execution time  CCT CPI 
200 ns 5 MHz 100 ns 100 ns 2 
100 ns 10 MHz 50 ns 200 ns 2 
20 ns 50 MHz 9 ns 40 ns 2 
10 ns 100 MHz 4 ns 20 ns 2 
5 ns 200 MHz 2 ns 10 ns 2 
3 ns 333 MHz 2 ns 9 ns 3 
2 ns 500 MHz 1 ns 6 ns 3 
1.9 ns 526 MHz 0.995 ns 7.5 4 
1.5 ns 666 MHz 0.5 ns 6 ns 4 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 33 

 
Figure 4b.View ofGate level netlist 

Table 3.Critical Path of Different Blocks of the Processor 
Processor Block Critical Pathin ns 
Top module 11.18 
Control Unit 8.31 
ALU 6.73 
RAM 3.85 
Programmed Counter 3.36 
Shifter 5.82 
InputALU Register 5.88 
Output ALU Register 4.20 
Comparator 6.02 
Address Register 5.88 
Instruction Register 5.88 
Tri-state Register 5.88 
 

 
Figure 5.Device Utilization Report 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 2 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 34 

Conclusion and future prospects 

The actual performance of the RISC processor is determined after its hardware realization, 
although the paper presents the design for high throughput, 167 MIPS at 500 MHz. The 
processor operates in medium frequency range which overcomes the over clocking and 
pipelining stall problem. The design gives the higher performance as well as lead on trade-off 
between speed and power. The important point is that its speed in MIPS with low power and 
reduced instruction time as according to the type of instructions. 

References 

1. Paterson, David A and Ditzel, D. R. (1980) “The case for the reduced instruction set 
Computer,” Computer Architecture News, 8(6) 25-33. 

2. Perry, Douglas L. “VHDL Programming by Example” McGraw Hill. 
3. Badeshi, Cyrusand Mesa-Martinez, Francisco J., Renau, Jose “μComplexity: Estimating 

Processor Design Effort” the 38th Annual IEEE/ACM International Symposium on Micro 
architecture (MICRO’05) 0-7695-2440-0/05 $20.00 © 2005. 

4. Parhami, Behrooz “Computer Architecture, From microprocessor to Super computer”. 
Oxford University Press, 2005, ISBN 0-19-515455-X. 

5. Rahman, Rashid and Othman, “The PESONA16TM RISC 16 bit microprocessor” 
ICSE2000 Proceedings, Nov2000. 


