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Abstract 

Quadrature mirror filter (QMF) banks have been of great interest during the 
past decade. These filters find application where a discrete signal is to split 
into a number of consecutive bands in the frequency domain, so that sub-
band signal can be processed in an independent manner and sufficient 
compression may be achieved. Typical processing includes under sampling 
the sub-band signals, encoding them and transmitting over a channel. 
Eventually, at some point in the process, the sub-band signals should be 
recombined so that original signal is properly reconstructed. Typical 
application of such signal splitting include sub-band coders for video 
signals [2], digital trans-multiplexers used in FDM/TDM conversion, and 
frequency domain speech scramblers. In this thesis we look at the QMF 
design problem purely as a signal reconstruction problem. The channel is 
therefore assumed to be noiseless and the exact signal characteristics are 
not given. We treat the QMF design problem as a multivariable 
optimization over the filter coefficient.  

Polyphase Structures & Polyphase decomposition 

The process of converting a signal from a given rate to a different rate is called sampling rate 
conversion. Systems that employ multiple sampling rates in the processing of digital signals are 
called multirate digital processing systems. The efficiency of digital filter can be increased by 
reducing the large FIR filter of length M in to a set of smaller filters of length K= M/I where M is 
selected to be a multiple of I. Since the up-sampling process inserts I-1 zeros between successive 
values of x (n), only K out of M input values stored in the FIR filter at any one time are non-zero. 
At one time instant these non-zero values coincide and are multiplied by the filter coefficient h 
(0), h (I), h (2I),……h (M-I). This observation leads to define a set of smaller filters called 
polyphase filters with unit sample responses. 

Pk(n) = h (k+nI) k= 0,1,……I-1    n= 0,1,……K-1(1.1) 

Where K = M/I is an integer 

The polyphase sub-filters are basically all-pass filters and differ primarily in their phase 
characteristics, this explain the reason for the term Polyphase. The polyphase filter can be 
viewed as a set of I sub filters connected to a common delay line.  
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Polyphase QMF Banks 

The QMF banks can be realized efficiently if polyphase structures are used. We start with the 
two channel analysis filter bank and with the equations H0(z) = H(z) and H1(z) = H(-z) for the 
filter transfer functions. Representing the low pass and high pass transfer functions in polyphase 
form: 

H0 (z) = H00 (z2) + z-1H01 (z2)                                                                                                (1.2) 

H0 (z) = H00 (z2) - z-1H01 (z2)                                                                                (1.3) 

              Since H1 (z) = H0 (-z) 

V0 (z) Low frequency component 
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Figure 1.1.Two channel analysis filter 
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Figure 1.2.Two channel polyphase analysis filter 

Both channels have common polyphase components in their transfer function. An analysis of the 
configuration in fig 3.1 results in: 

V0 (z)  = H00 (z2). X (z) + z-1  H01 (z2). X (z) 

= H0 (z).X (z)                                                           (1.4) 

V1 (z)  = H00 (z2). X (z) - z-1  H01 (z2). X (z) 
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= H1 (z).X (z)                                                            (1.5) 

Finally, two down-sampler with factor 2 follow at the end of analysis filter bank. They can be 
placed before the filter, in accordance with the third party as in fig 1.2 . In this manner, half as 
many filter operations per seconds as before need to be performed. With the sampling rate and 
the number of operations halved the overall gain is 4:1.  

The synthesis filter bank consists of a low-pass filter G0 (z) and high-pass filter G1 (z), which is 
associated by the relationship G1 (z) = -G0 (-z), if we expand G0 (z) and G1 (z) to its polyphase 
form:  

G0 (z) = G00 (z2) + z-1G01 (z2)                                 (1.6) 

G1 (z) = -G00 (z2) + z-1G01 (z2)                                 (1.7) 

So we can written it as : 

Y (z) = G00 (z2). [X0(z) +X1(z)]+z-1G01(z2). [X0(z) +X1(z)]= G0 (z).X0 (z) +G1 (z).X1 (z)                       
(1.8) 

                                  X0(z)                Y(z) 

 

                         X1(z)  
    

 
 Figure 1.3.Two channel synthesis filter 
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 z-1  
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Figure 1.4 Two channel polyphase synthesis filter 

Using the sixth identity, the up-samplers at the input of the synthesis filter bank can be moved to 
the output. As a result we obtain the computational complexity that is reduced by a factor of 4 
compared to original version. 

General Two Channel Polyphase Filter Banks  

In the following, topological aspects of two channel filter banks will be treated rather than 
characteristics of transfer functions. The following considerations are focused on the two-channel 
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analysis filter bank. By decomposing the two transfer functions H0 (z) and H1 (z) into their 
polyphase components as: 

Ho (z) = (z2) + z-1 (z2), 

H1 (z) = (z2) + z-1 (z2),                               (1.9) 

 

 

 

 

 

 

The polyphase analysis filter consists of two parts, an input de-multiplexer and a discrete time 
system with two inputs and two outputs, which is operated at the reduced sampling rate. The 
system is defined by the vector equation: 

H (p)(z)                        (1.10)  

Where     

H (p)(z)                    (1.11) 

Diagrammatically it can be shown as: 
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Figure 1.5.Polyphase analysis filter bank 
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Again, we start from two channel synthesis filter bank. Two allow us to relate the vectors of the 
analysis and synthesis filter banks in a simple manner, the transfer functions G0(z) and G1(z) are 
expanded into a type 2 polyphase representation: 

Go (z) = z-1 (z2) + (z2), 

G1 (z) = z-1 (z2) + (z2),                    (1.12) 

G (p2) (z)] T .                                            (1.13) 

Where                                   

G(p2)(z)                    (1.14) 

The matrix consists of polyphase type-2 component and is called polyphase matrix of synthesis 
filter. 

 
Conditions for Perfect Reconstruction 

If we connect the analysis and synthesis filter bank in series, we obtain the SBC filter bank as 
shown in fig below  
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Figure 1.6.Two channel polyphase filter bank 

The transfer characteristics of the series connection of both system is calculated from the above 
equation to give: 

 = G (p2) (z)] T. H (p)(z).        (1.15) 

Now the condition for perfect reconstruction is: 
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G (p2) (z)] T. H (p)(z) = z-kI2                                                             (1.16) 

Where I2 is the two- by two identity matrix. So in the matrix form we can write the above 
equation as 

         => 2z-MH00(z-1)H00(z) = 1 

Conclusion Drawn 

Summarizing here is that the FIR filter can be efficiently represented by its polyphase 
components and use the polyphase component with aliasing free condition makes the system 
more efficient. As the polyphase structures for two fold decimation filter which is symmetric 
impulse response with order N requires about N/4 MPUs whether N is odd or even. 

Designing of Two Channel QMF Using FIR Polyphase Component and M-
Channel QMF 

The design of optimal FIR analysis and synthesis QMF filters using polyphase structure is the 
main focus of this chapter, with the distortion measure to be minimized being a weighted mean 
square difference between the input and the reconstructed output. Unlike other design techniques, 
this algorithm assumes relationship between the all filters, therefore we have to choose only one 
filter coefficient. The input signal to the QMF bank is a discrete time signal, and the channel is 
assumed to be noiseless. All filters are FIR with even number of taps.  

Analysis of the QMF bank with one polyphase component 

We shall consider the system depicted in fig 4.1. The filters HO(z) and H1(z) are low pass and 
high pass FIR filter respectively with N, even number of taps. The time domain relationship 
between hO(n) and eo(n) & e1(n) imply the followings: 
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Figure 2.1.Quadrature mirror filter 
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e0(n) = h0(2n) & e1(n) = h0(2n+1)                                                       (2.1) 

So both eo(n) and e1(n) are low pass filter with eo(n) is having the even coefficients and e1(n)  is 
having the odd coefficients of hO(n). H0(z) can either be a Type 1 or a Type 2 linear phase FIR 
transfer function since it has to be a low pass filter. Then h0(n) satisfy the condition: 

h0 [n] = h0 [ N – n ]                                             (2.2)  

H0( ejω ) = ejωN/2 H0(ω)  

In the alias free QMF the distortion transfer function for the realization is given by:  

T(z) = 2z-1E0(z2)E1(z2) = 2z-1                                             (2.3) 

The resulting bank H0(z) is a linear phase FIR filter, then its polyphase components E0(z) and 
E1(z) are also linear phase FIR transfer functions. The frequency response of distortion transfer 
function can now written as  

T( ejω ) = e-jNω /2{│H0( ejω ) │2 – (-1)N │H0( ej(Π-ω) ) │2}  (2.4) 

From the above equation, it can be seen that if N is even, then T( ejω ) = 0 at the ω = Π/2, 
implying severe amplitude distortion at the output of filter bank. N must be odd, in which case 
we have 

T( ejω ) = e-jNω /2{│H0( ejω ) │2 + │H0( ej(Π-ω) ) │2}= e-jNω /2{│H0( ejω ) │2 +│H1( ejω ) │2} (2.5) 

It follows from the above that the FIR 2 channel QMF bank will be of perfect reconstruction type 
if 

│H0( ejω ) │2 +│H1( ejω ) │2  = 1                         (2.6) 

Now, the 2 channel QMF bank with linear phase filter has no phase distortion, but will always 
exhibit amplitude distortion unless │T( ejω ) │ is a constant for all ω. If H0(z) is a very good low 
pass filter with │H0( ejω ) │= 1 in the pass band and │H0( ejω ) │= 0 in the stop band, then H1(z) 
is a very good high pass filter with its pass band coinciding with the stop band of H0(z) and vice-
versa. As a result, │T( ejω ) │ = ½ in the pass bands of H0(z) andH1(z) amplitude distortion 
occurs primarily in the transition band of these filters. Degree of distortion is determined by the 
amount of overlap between their squared-magnitude responses. This distortion can be minimized 
by controlling the overlap, which in turn can be controlled by appropriately choosing the pass 
band edge of H0(z).  

The analysis filters H0(z) and H1(z) have typically a low-pass and high-pass frequency responses 
respectively, with a cutoff at Π/2 
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Figure 2.2 Frequency responses of LPF and HPF 

One way to minimize the amplitude distortion is to iteratively adjust the filter coefficients h0(n)of 
H0(z) on a computer such that 

│H0( ejω ) │2 +│H1( ejω ) │2  =  

(1) Stop band energy ω, and 

(2) Square of error of H0(z) and H1(z) 

The objective function is given by: 

Φ = αΦ1 + (1-α) Φ2                                                 (2.8) 

Where  

 Φ1 =   │H(ejω) │2d ω                                   (2.9)  

and    

Φ2 =    │H0(ejω) │2 - │H1(ejω)│2 )2 d ω (2.10) 

And 

 0 < α < 1, and  ω1 = Π/2 + ξ  for some small ξ  > 0.  
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Different Design Algorithms 
Hooke and Jeaves Algorithm for QMF design 

The Hooke and Jeaves Algorithm is a search algorithm that attempts to minimize a single 
objective function of several variables. It requires a subroutine that takes the search variables as 
inputs and provides the value of objective function as its output. 

  

          

 

                                                          

    

 

                      

  

     

Figure 3.1.Optimization system block diagram 

Due to the search method of Hooke and Jeaves, the starting point and starting increments are 
critical. A starting point that is too good may not minimize well because it will trap in local 
minima. If the step size is set to avoid these minima, it is usually too large that the relatively 
unsophisticated search will not find any better minima, and terminate. A starting point well away 
from the desired solution, on the other hand allows the algorithm a reasonably good probability 
of finding a useful minima. Manual intervention in the form of different and carefully selected 
starting points and careful observation of the run time output and results is necessary for success, 
because of many local minima. 

Design of QMF Bank using the method given by A. Kumar 

Over the past few years, several methods have been proposed to minimize amplitude distortion 
so that perfect reconstruction can be achieved. For the perfect reconstruction, the prototype filter 
in QMF bank must satisfy these conditions 

│H0( ejω ) │2 + │H0( ej(ω –Π/2) ) │2  =1for   0 < ω <  Π/2 (3.1) 

│H0 ( ejω ) │ = 0     for   ω >  Π/2                       (3.2) 

 
   Initialization 

Object 
function 

Calculation 

Observation 
and manual 
Termination  

Starting 
points and 
parameters 

Verify Results 
(Manual 
Interventions) 

Hooke and 
Jeaves 
search 

Display 
Results 

Done? 



        International Journal on Emerging Trends in Electronics & Communication Engineering  
Vol. 4, Issue 1 – 2020 

ISSN: 2581-558X 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 26 

 
Figure 3.2.Design algorithm for optimization of QMF 
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If Φ( ejω ) = │H0 ( ejω ) │2 + │H0( ej(ω –Π) ) │2, then for the perfect reconstruction, Q( ejω ) = 1 and 
if it is evaluated at ω = 0.5 Π then this implied that the magnitude response of the prototype filter 
is 0.707 in ideal condition. 

│H0( ej0.5Π) │2 = 0.5 or  │H0( ej0.5Π) │=0.707 (3.3) 

In QMF bank, the amplitude distortion also depends on the degree of overlapping between both 
the analysis filters. If the passband edge frequency is taken either too large or too small, then the 
reconstruction error is large at ω = 0.5 Π. Therefore optimum ωp is to be selected such that the 
reconstruction error is minimum. Here in proposed algorithm, the optimum ωp is found by 
adjusting filter coefficient by eqn. (3.3). 

In this algorithm filter order (N) and stop band attenuation (As) are fixed, and instead of cut-off 
frequency, pass band edge frequency (ωp ) is optimized so that amplitude distortion is reduced. 
The prototype filter is designed using given specifications before the optimization start. The 
magnitude response (MRC) of the prototype filter is evaluated │H0 ( ejω ) │ at ω = 0.5 Π and 
error between ideal magnitude response (MRI) and calculated  MRC is to be calculated. If the 
tolerance (TOL) is not satisfied, then ωp is varied using the step size. If MRC is less then MRI, 
then ωp is varied using the step size otherwise it is decreased. The prototype filter is redesigned 
using new ωp , same order, and same As. In every iteration, step size is halved. Therefore, this 
approach can be used for the design of prototype filter of larger taps. Here the prototype filter is 
designed using the constraint equiripple FIR technique.   

Conclusion and Future Scope 

Conclusion 

There are several classes of optimal filter according to choice of performance measure or 
objective function to be minimized. FIR filter based on window approach do not yield the 
optimum filter .These filters suffers from Gibbs phenomenon. Also least square approach 
includes matrix inversions which are difficult and time consuming. So the approach of this thesis 
work is more efficient from other approaches used for error optimization. The adjusting 
parameter α is introduced in this thesis to minimize the error. As α is increasing the peak stop 
band ripple is reduced at the expense of peak pass band ripple. So we conclude that by adjusting 
the value of α we can adjust the error received.  

Future Scope 

The optimization algorithm is an iterative procedure which alternates between computing a pair 
of optimal analysis filters and optimal synthesis filters, until the error reduction is negligible. The 
extension of this algorithm for designing of M band QMF is the most obvious area for future 
research. The extension should be quite easy, since the optimization problem is a least square 
one. In M band case, care must be taken as to how many of the filters can be fixed. It would also 
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be useful to improve the frequency band separation of the filters, in the case that one of the filter 
is fixed. 
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